
G05 – Random Number Generators

Chapter G05

Random Number Generators

Contents

1 Scope of the Chapter 2

2 Background to the Problems 2

3 Recommendations on Choice and Use of Available Routines 3
3.1 Design of the Chapter . 3
3.2 Selection of Routine . 4
3.3 Programming Advice . 5

4 Routines Withdrawn or Scheduled for Withdrawal 5

5 References 6

[NP3445/2/pdf] G05.1

Introduction – G05 G05 – Random Number Generators

1 Scope of the Chapter

This chapter is concerned with the generation of sequences of independent pseudo-random numbers from
various distributions, and the generation of pseudo-random time series from specified time-series models.

2 Background to the Problems

A sequence of pseudo-random numbers is a sequence of numbers generated in some systematic way such
that its statistical properties are as close as possible to those of true random numbers: for example,
negligible correlation between consecutive numbers. The most common methods are based on the
multiplicative congruential algorithm, see Knuth [1]. The basic algorithm is defined as:

ni = (a × ni−1) mod m (1)

The integers ni are then divided by m to give uniformly distributed pseudo-random numbers lying in the
interval (0,1).

Alternatively there is a variant known as the Wichmann–Hill algorithm, see Maclaren [2], defined as:

n1,i = (a1 × n1,i−1) mod m1

n2,i = (a2 × n2,i−1) mod m2

n3,i = (a3 × n3,i−1) mod m3

n4,i = (a4 × n4,i−1) mod m4

Ui =
(

n1,i

m1

+
n2,i

m2

+
n3,i

m3

+
n4,i

m4

)
mod 1.0

(2)

This generates pseudo-random numbers Ui, uniformly distributed in the interval (0,1).

Either of these algorithms can be selected to generate uniformly distributed pseudo-random numbers. If
the basic algorithm (1) is selected then the NAG generator uses the values a = 1313 and m = 259 in
(1). This generator gives a cycle length (i.e., the number of random numbers before the sequence starts
repeating itself) of 257. A good rule of thumb is never to use more numbers than the square root of the
cycle length in any one experiment as the statistical properties are impaired. For closely related reasons,
breaking numbers down into their bit patterns and using individual bits may cause trouble.

If the Wichmann–Hill algorithm is selected then one or more of 273 independent generators are available.
Each of these is defined by the set of constants aj and mj for j = 1, . . . , 4. The constants aj are in the
range 112 to 127 and the constants mj are prime numbers in the range 16718909 to 16776971, which
are close to 224 = 16777216. These constants have been chosen so that they give good results with the
spectral test, see Knuth [1] and Maclaren [2]. The period of each Wichmann–Hill generator would be at
least 292 if it were not for common factors between (m1 − 1), (m2 − 1), (m3 − 1) and (m4 − 1). However,
each generator should still have a period of at least 280. Further discussion of the properties of these
generators is given in Maclaren [2] where it was shown that the generated pseudo-random sequences are
essentially independent of one another according to the spectral test.

The sequence given in (1) needs an initial value n0, known as the seed, while the sequence given in (2)
needs four such seeds. The use of the same seed will lead to the same sequence of numbers when these
are computed serially. One method of obtaining a seed is to use the real-time clock; this will give a non-
repeatable sequence. It is important to note that the statistical properties of the random numbers are
only guaranteed within sequences and not between sequences. Repeated initialization will thus render the
numbers obtained less rather than more independent. Similarly the statistical properties of the random
numbers are not guaranteed between two sequences generated using the two algorithms.

Random numbers from other distributions may be obtained from the uniform random numbers by the
use of transformations and rejection techniques, and for discrete distributions, by table based methods.

G05.2 [NP3445/2/pdf]

G05 – Random Number Generators Introduction – G05

(a) Transformation methods

For a continuous random variable, if the cumulative distribution function (CDF) is F (x) then
for a uniform (0,1) random variate u, y = F−1(u) will have CDF F (x). This method is only
efficient in a few simple cases such as the exponential distribution with mean µ, in which case
F−1(u) = −µ logu. Other transformations are based on the joint distribution of several random
variables. In the bivariate case, if v and w are random variates there may be a function g such that
y = g(v, w) has the required distribution; for example, the Student’s t-distribution with n degrees of
freedom in which v has a Normal distribution, w has a gamma distribution and g(v, w) = v

√
n/w.

(b) Rejection methods

Rejection techniques are based on the ability to easily generate random numbers from a distribution
(called the envelope) similar to the distribution required. The value from the envelope distribution
is then accepted as a random number from the required distribution with a certain probability;
otherwise, it is rejected and a new number is generated from the envelope distribution.

(c) Table search methods

For discrete distributions, if the cumulative probabilities, Pi = Prob(x ≤ i), are stored in a table
then, given u from a uniform (0,1) distribution, the table is searched for i such that Pi−1 < u ≤ Pi.
The returned value i will have the required distribution. The table searching can be made faster
by means of an index, see Ripley [4]. The effort required to set up the table and its index may
be considerable, but the methods are very efficient when many values are needed from the same
distribution.

In addition to random numbers from various distributions, random compound structures can be
generated. These include random time series, random matrices and random samples.

The efficiency of a simulation exercise may often be increased by the use of variance reduction methods
(see Morgan [3]). It is also worth considering whether a simulation is the best approach to solving the
problem. For example, low-dimensional integrals are usually more efficiently calculated by routines in
Chapter D01 rather than by Monte Carlo integration.

3 Recommendations on Choice and Use of Available Routines
Note. Refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Design of the Chapter

All the generation routines call – directly or indirectly – an internal generator (selected to be either the
basic generator (1) or a Wichmann–Hill generator (2)), which generates random numbers from a uniform
distribution over (0,1). Thus a call to any generation routine will affect all subsequent random numbers
produced by any other routine in the chapter. Despite this effect, the values will remain as independent
as if the different sequences were produced separately.

A utility routine is provided to select the internal generator:

G05ZAF allows you to select either the basic generator (1) or the Wichman–Hill generators (2). It is
recommended that the Wichman–Hill generators are selected since these have a longer cycle-length.
The basic generator should be used when you wish to reproduce results obtained from code calling
Chapter G05 routines from previous releases of the Library.

Two utility routines are provided to initialize the basic generator:

G05CBF initializes it to a repeatable (when executed serially) state, dependent on an integer
parameter: two calls of G05CBF with the same parameter-value will result in the same subsequent
sequences of random numbers (when both are generated serially). If G05ZAF is used to select
the Wichmann–Hill generators, then G05CBF selects one of the 273 possible generators as
the base generator depending on the seed used; the base generator number is computed as
mod(seed − 1, 273) + 1.
G05CCF initializes it to a non-repeatable state, in such a way that different calls of G05CCF, either
in the same run or different runs of the program, will almost certainly result in different subsequent
sequences of random numbers.

[NP3445/2/pdf] G05.3

Introduction – G05 G05 – Random Number Generators

As mentioned in Section 2, it is important to note that the statistical properties of pseudo-random
numbers are only guaranteed within sequences and not between sequences produced by the same
generator. Repeated initialization will thus render the numbers obtained less rather than more
independent. In a simple case there should be only one call to G05CBF or G05CCF, which should
be before any call to an actual generation routine.

Two other utility routines, G05CFF and G05CGF, are provided to save or restore the state of the
internal generator (including the seed(s) of the multiplicative congruential method used by the generator).
G05CFF and G05CGF can be used to produce two or more sequences of numbers, where some are
repeatable and some are not; for example, this can be used to simulate signal and noise. As their
overheads are not negligible, numbers should be produced in batches when this technique is used. While
they can be used to save the state of the internal generator between jobs, the two arrays must be restored
accurately. The corresponding process between machines, while sometimes possible, is not advised. It
also makes no sense to save the state from one generator and restore it for the alternative generator.

3.2 Selection of Routine

For three of the commonest continuous distributions – uniform, exponential, and Normal – there is a choice
between calling a function to return a single random number and calling a subroutine to fill an array
with a sequence of random numbers; the latter is likely to be much more efficient on vector-processing
machines.

Distribution Function returning a
single number

Subroutine returning an
array of numbers

uniform over (0,1) G05CAF G05FAF

uniform over (a, b) G05DAF G05FAF

exponential G05DBF G05FBF

Normal G05DDF G05FDF

For two discrete distributions, the uniform and Poisson, there is a choice between routines that use
indexed search tables, which are suitable for the generation of many variates from the distribution with
the same parameters, and routines that are more efficient in the single call situation when the parameters
may be changing.

Distribution Single call Set up table

discrete uniform G05DYF G05EBF

Poisson G05DRF G05ECF

G05EBF and G05ECF return a reference array which is then used by G05EYF.

The following distributions are also available. Those indicated can return more than one value per call.

(a) Continuous Distributions

Beta distribution (multiple) G05FEF
Cauchy distribution G05DFF
Chi-square distribution G05DHF
F -distribution G05DKF
Gamma distribution (multiple) G05FFF
Logistic distribution G05DCF
Lognormal distribution G05DEF
Student’s t-distribution G05DJF
von Mises distribution G05FSF
Weibull distribution G05DPF

(b) Multivariate Distributions

Multivariate Normal distribution G05EAF G05EZF

G05.4 [NP3445/2/pdf]

G05 – Random Number Generators Introduction – G05

(c) Discrete Distributions using table search

Binomial distribution G05EDF
Hypergeometric distribution G05EFF
Negative binomial distribution G05EEF
User-supplied distribution G05EXF

The above routines set up the table and index in a reference array; G05EYF can then be called to
generate the random variate from the information in the reference array.

(d) Generation of Time Series

Univariate ARMA model, Normal errors G05EGF G05EWF
Vector ARMA model, Normal errors G05HDF

(e) Sampling and Permutation

Random permutation of an integer vector G05EHF
Random sample from an integer vector G05EJF
Random logical value G05DZF

(f) Random Matrices

Random orthogonal matrix G05GAF
Random correlation matrix G05GBF

3.3 Programming Advice

Take care when programming calls to those routines in this chapter which are functions. The reason is
that different calls with the same parameters are intended to give different results.

For example, if you wish to assign to Z the difference between two successive random numbers generated
by G05CAF, beware of writing

Z = G05CAF(X) - G05CAF(X)

It is quite legitimate for a Fortran compiler to compile zero, one or two calls to G05CAF; if two calls,
they may be in either order (if zero or one calls are compiled, Z would be set to zero). A safe method to
program this would be

X = G05CAF(X)
Y = G05CAF(Y)
Z = X-Y

Another problem that can occur is that an optimising compiler may move a call to a function out of a
loop. Thus, the same value would be used for all iterations of the loop, instead of a different random
number being generated at each iteration. If this problem occurs, consult an expert on your Fortran
compiler.

All the routines in this chapter rely on information stored in common blocks, which must be saved
between calls. The possible pitfalls are different depending on the internal generator used. If G05ZAF
is used to select the basic generator then, in a multi-threaded application, simultaneous calls to Chapter
G05 routines, by different threads, cannot be safely made (for example, in a ‘parallel region’ on SMP
systems). If G05ZAF is used to select the Wichmann–Hill generators then G05CBF can be called by
different threads with different seeds to ensure that each thread uses a different generator (e.g., seed =
Ki × 273 + i for the ith thread and for some integer Ki).

4 Routines Withdrawn or Scheduled for Withdrawal

Since Mark 13 the following routines have been withdrawn. Advice on replacing calls to these routines
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

G05DGF G05DLF G05DMF

[NP3445/2/pdf] G05.5

Introduction – G05 G05 – Random Number Generators

5 References

[1] Knuth D E (1981) The Art of Computer Programming (Volume 2) Addison–Wesley (2nd Edition)

[2] Maclaren N M (1989) The generation of multiple independent sequences of pseudorandom numbers
Appl. Statist. 38 351–359

[3] Morgan B J T (1984) Elements of Simulation Chapman and Hall

[4] Ripley B D (1987) Stochastic Simulation Wiley

G05.6 (last) [NP3445/2/pdf]

